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THIS CHAPTER DISCUSSES THE FOLLOWING POINTS:

•	 Definition of a population for sampling purposes.
•	 Selection of the size and shape for a plot configuration.
•	 Distinguishing among simple random, systematic, stratified and cluster 

sampling designs.
•	 Methods for constructing sampling design.
•	 Estimating population means and variances.
•	 Estimating sampling errors. 
•	 Special considerations for tropical forest inventories.

Abstract
National forest assessments are best conducted 
with sufficiently accurate and scientifically 
defensible estimates of forest attributes. This 
chapter discusses the statistical design of the 
sampling plan for a forest inventory, including 
the process used to define the population to be 
sampled and the selection of a sample intended 
to satisfy NFA precision requirements. The 
team designing a national forest inventory 
should include an experienced statistician. If 
such an expert is not available, this section 
provides guidance and recommendations for 
relatively simple sampling designs that reduce 
risk and improve chances for success.

1. Introduction
The sampling design chosen to support the 
technical programme used for an NFA requires 
a theoretical basis that can be implemented 
on the ground (see chapter on Organization 
and Implementation, p. 13). Understanding 
the basic concepts of statistical design and 

estimation methods is a key component of the 
overall process for information management 
and data registration for NFAs (see chapter 
on Information management and data 
registration, p. 93).

1.1 Objectives
The goal is to estimate the condition of forests 
for an entire nation using data collected from 
a sample of field plots. The basic objectives 
of an NFA are assumed to be fourfold: (i) to 
obtain national estimates of the total area 
of forest, subdivided by major categories 
of forest types and conditions, as well as 
the numbers and distributions of trees by 
species and size categories, wood volume 
by tree characteristics, non-wood forest 
products, estimates of change in these forest 
attributes and indicators of biodiversity; 
(ii) to obtain sufficiently precise estimates 
for selected geographic regions such as the 
nation, subnational areas, provinces or states 
and municipalities; (iii) to collect sufficient 
kinds and amounts of information to satisfy 
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international reporting requirements; and (iv) 
to achieve an acceptable compromise between 
cost and precision, and geographic resolution 
of estimates.1

Assumptions and simplifying 
constraints
Several assumptions underlie the discussion 
that follows: first, that expert statisticians 
experienced in designing natural resource 
inventories and analysing the data are not 
available; second, that ancillary data in the 
form of maps depicting features such as 
ecological regions, land cover, soils, elevation, 
political and administrative boundaries, and 
transportation systems are available; and 
third, that models for predicting attributes 
such as individual tree volumes from basic 
tree measurements are available. Even on the 
basis of these assumptions, a full discussion of 
all sampling design possibilities for an NFA 
is beyond the scope of this section. Thus, 
three constraints have been imposed: first, 
this chapter presents only relatively simple, 
multipurpose designs that can be used reliably 
with local expertise; second, the discussion is 
limited to designs that are flexible, yet reduce 
risks of bias and loss of credibility; and third, 
there is a focus on designs that feature equal 
probability samples, or in the case of stratified 
designs, equal probability samples within 
strata.

1.2 Why use sampling?
The most precise description of a population 
comes from accurate measurements of each 
member of the population, otherwise known 
as a census. However, a typical census is 
very difficult to undertake because of cost 
and logistical problems. Imagine trying to 
measure every tree in a 1 million hectare 
forest. Instead, a sample measures a portion 
of the population – in forestry this is usually 
a very small portion. Estimates based on data 
collected from the measured sample are then 
extrapolated to the entire population, the 
majority of which has not been measured. 

1	 See chapter on Observations and measurements,-
Section 2, p. 42

This can be thought of as “guessing” or 
“estimating” the condition of a population 
based on sampling a few members of that 
population. If the sample is representative 
of the entire population, then the estimate 
will be accurate and less likely to deviate 
from the true population value. Otherwise, 
estimates will be inaccurate and misleading – 
a situation that may not be known because the 
true condition of the whole population will 
remain unknown. The best possible approach 
is to increase the chances of measuring a 
representative sample. This can be done by 
using scientifically rigorous rules to select the 
sample, maximizing the number of sample 
units observed or measured, and minimizing 
the errors in measuring each sample.  It is 
not difficult to produce data. It is much more 
challenging to produce accurate data with 
known reliability that will be used to help 
make important decisions.

1.3 Defining the population
Scientifically defensible estimation of 
population attributes is based on a formal 
body of mathematical theory, which must 
be respected if it is to be used to defend 
the accuracy of sample-based estimates. 
The careful selection of a sampling frame, 
plot configuration and sampling design are 
crucial steps in the process and cannot be 
accomplished independently of each other. 
Each decision has an impact on the others. 
The mathematical theory begins with a 
precise definition of the population for which 
attributes will be estimated. For example, for a 
municipality of 5 million ha of which 1 million 
ha comprises forest, the statistical population 
could be described in several different but 
logical ways:

•	 Thousands of tree-stands and non-forest 
polygons

•	 Tens of millions of potential 0.1 ha 
sampling plots

•	 Ten million remotely sensed 30 m x 30 m 
pixels

•	 Billions of trees
•	 An infinite number of points.
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There is no one best definition of a 
population for forest inventories. The key 
issue in basic applications of forest sampling is 
to define precisely the geographic boundaries 
of the targeted population, such as all lands, 
both forest and non-forest, within a nation 
that are outside the geopolitical boundaries of 
urban areas. It is not uncommon to discover 
that portions of a target population cannot 
be sampled. Examples include areas that are 
remote and inaccessible or unsafe to access. 
These areas should be identified precisely 
in a cartographic form, even though the 
true boundaries might not be obvious, and 
excluded from the sampled population. 
Scientifically defensible estimates must be 
limited to the sampled population only.

1.4 Choosing a sampling 
frame
Three terms can be distinguished: 
sampling frame, sampling design and plot 
configuration. Sampling frame refers to the set 
of all possible sample units; sampling design 
refers to the selection of a subset of sample 
units to represent the population; and plot 
configuration refers to the size, shape and 
components of the field plot. 

Some advantages are gained with a sampling 
frame that considers a forest to be an infinite 
population of points. One approach to 
sampling with this type of sampling frame 
is to use the popular Bitterlich plot, which is 
efficient for estimating variables correlated 
with tree size. Alternative point-based plot 
configurations measure a support region and 
impute its attributes to a point. When near a 
boundary or stand edge, a point is more easily 
assigned to one side or the other, whereas 
plots with different designs can straddle edges 
or boundaries. A recommended approach 
is to consider the forest population to be 
an infinite set of points and to use physical 
measurements in a support region to describe 
conditions at a sample point.

1.5 Choosing a plot 
configuration
The plot configuration consists of the plot 
size and shape and determines the variables 
to be measured at each sample plot location.  
Choices for plot configurations include variable 
area plots, fixed-area plots, subdivisions of 
plots into subplots and cluster plots, all of 
which require size and shape considerations. 
Variable area plots using Bitterlich sampling 
are particularly effective for obtaining precise 
estimates of forest attributes relating to tree 
size. Fixed-area plots, while not necessarily 
optimal for any particular forest attribute, 
are an excellent compromise when sampling 
is intended to produce estimates of a wide 
variety of forest attributes, and tend to be 
more compatible with ancillary data. Cluster 
sampling reduces travel between plots while 
providing a sufficient number of plots. The 
optimal shape and size may be addressed using 
sampling simulation and prior information, 
although circular plots are often used in forest 
inventories. 

Issues concerning the selection of a plot 
configuration are also discussed in the chapter 
on Observations and measurements, p. 41.

1.6 Measuring sample plots
The chapter on Observations and measurements 
summarizes the major considerations relevant 
to measuring sample plots. For more detailed 
information, see Schreuder et al. (2004). This 
section discusses two aspects of this issue: the 
use of remotely sensed data for measuring 
plots and temporary versus permanent plots. 

First, remotely sensed data from medium-
resolution satellites and high-altitude aerial 
photography (1:24 000 to 1:60 000 scales) 
provide cost-effective measurements for  
coarse indicators of forest conditions, 
mostly forest area changes. However, most 
measurements of detailed forest conditions 
are impossible with these sensors (see chapter 
on Remote sensing, p. 77). More detailed 
measurements of forest conditions may be 
obtained with low-altitude aerial photography 
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and sensors such as Lidar. All these sensors 
are currently expensive and have narrow 
fields of view that are not currently capable 
of producing border-to-border coverage of 
an entire nation. However, in principle, these 
sensors could be used to measure a sample of 
locations in a national survey. For example, it 
may be cost efficient to measure a plot initially 
with data from a remote sensor to determine 
if the plot has accessible forest land cover or 
forest land use. If not, field crew visits to such 
locations may not be warranted. 

Second, estimating changes and trends in a 
country’s forests is often an important part of 
an NFA. If the locations of sample plots are 
sufficiently documented, then the same plots 
can be remeasured over time to obtain more 
precise estimates of forest change, such as tree 
growth, mortality, harvesting, regeneration, 
and changes in the areas of forest conditions 
and land-use categories. Remeasurement 
of plots increases estimation efficiency 
and contributes to better understanding 
of the components of change. However, if 
permanent plots are used, their locations 
must be very accurately documented. To 
do this, researchers can drive a pin into the 
ground at the centre or corner of a plot, 
and carefully document how to find the pin 
from a convenient starting location, perhaps 
several kilometres distant. The pin should be 
hidden from normal view to keep the plot 
truly representative of thousands of hectares 
that will never be measured. A sample plot 
will not be representative if it receives special 
treatment, such as protection from harvesting 
or other disturbances. An obvious pin in the 
ground could also influence how others treat 
the location.

Although remeasurement of the same 
trees produces the most precise estimates of 
change, this approach is more costly because 
the same plot centres and trees must be 
relocated at the time of each measurement. 
Alternatives for estimating change from 
temporary plots include estimation of 
tree growth from increment borings, and 
gross estimation of forest area and volume 

change by comparing independent estimates 
obtained from measurements of different sets 
of temporary plots at different points in time. 
However, harvest, mortality and regeneration 
are difficult to estimate using data from 
temporary plots. Thus, where possible, it is 
recommended to use permanent plots or a 
combination of permanent and temporary 
plots (e.g. Ranneby et al., 1987).

2. Sampling design
There are two general sampling approaches: 
subjective or purposive sampling and 
probability sampling. Subjective sampling 
attempts to use professional judgement 
to select sample units believed to be 
representative of the entire population. These 
units are often convenient to measure, which 
reduces cost. Although data gathered in this 
way accurately describe the conditions on 
the sampled sites, they may not accurately 
characterize the entire population. Supporters 
of subjective sampling trust the ability of 
experts to select a representative sample and 
argue that this approach is good enough for 
practical purposes. In some simple situations, 
this may be true. However, some users of the 
data may lack the same confidence in the 
experts. Expensive data can become worthless 
because the sampling design is not sufficiently 
robust under scientific criticism. In addition, 
convenient sampling sites are often near roads, 
which are frequently associated with unique 
landforms, land uses, management histories 
and landscape patterns. Are such sites truly 
representative of the entire population? The 
answer is debatable. It is far easier to discredit 
the accuracy of population estimates from a 
subjective sample than prove otherwise. 

Probability sampling replaces subjective 
judgements with objective rules based on 
known probabilities of selection for each 
member of a population. For example, if a 
1 million ha forest comprises a population of 
10 m x 10 m plots, there would be 100 million 
of those plots in the population. The selection 
of one of these plots at random amounts to 
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a probability of 1/100 000 000. Selection of 
a simple random sample of 1 000 plots to 
estimate conditions in the entire 1-million 
ha population would give each member of 
that population a probability of selection of 
approximately 1 000/100 000 000=1/100 000, 
and each plot measured in the sample could be 
seen as representing 99 999 other unmeasured 
plots. The important lesson is that probability 
sampling is an objective method with precise 
rules and a mathematical foundation for 
estimating population attributes based on 
a sample. The probability that an expert 
will select any one potential sample plot is 
unknown, and the mathematics of subjective 
sampling cannot be applied in a scientifically 
defensible way. Thus, this chapter recommends 
probability rather than subjective sampling, 
and further recommends equal probability 
sampling in which possible sampling unit 
locations have equal probabilities of selection 
for the sample.

2.1 Selecting a probability 
sampling design
Many of the difficulties associated with 
selecting a sampling design arise from two 
factors: first, sampling units are distributed 
in space and observations of them may be 
spatially correlated; and second, different 
sampling designs have different costs. Spatial 
correlation among observations of variables 
of interest strongly influences selection 
of sampling designs. Ecological, climatic 
and soil factors, and forestry management 
practices, cause observations from plots that 
are near to each other to be, on average, more 
similar than observations from plots that are 
farther apart. The result is that, in a strict 
sense, construction of a completely optimal 
sampling design is an impossible task because 
the numerous NFA-measured and derived 
variables vary quite differently in space. 
Thus, because optimal sampling designs are 
different for different variables, optimization 
may necessitate a focus on minimizing the 
standard error of a single important variable, 
such as wood volume, or on a weighted 

function of the standard errors for a small 
number of variables. One partial solution is to 
minimize the effects of spatial correlation by 
establishing sampling locations as far apart as 
possible. This also accommodates the fact that 
sample plot observations that deviate more 
from each other bring more information to 
the sample. In forest sampling, this often 
suggests hexagonal sampling designs. The 
primary sampling costs are attributed to 
travelling to and from the sampling unit 
location and measuring the unit. These costs, 
in turn depend on the structure of landscape 
and forests, measurements to be taken, and 
topographic, economic and transportations 
conditions. 

A common starting point in selecting a 
sampling design is knowledge of the acceptable 
upper bounds for standard errors of estimates 
and an upper bound for cost. Optimizing the 
sampling design, given the sampling frame 
and plot configuration, involves selecting 
a procedure for spatially distributing the 
sampling unit locations in such a way that 
standard errors are minimized, while not 
exceeding the total allowable costs. Sometimes 
this will not be possible, and compromises 
may be necessary. 

2.2 Simple random 
sampling
Figure 1a shows a simple random sample 
with sample plots placed randomly within 
the sampled population. Although there are  
spatial clusters and voids in the plot 
distribution, this remains a valid probability 
sample. The geographic coordinates for each 
sample plot in a random sample may be 
selected with a random number generator 
with the allowable coordinates restricted 
to the sampled population. Otherwise, no 
consideration is given to safety, difficulty 
of measuring plots or travel to and from 
plot locations. This is the least risky equal-
probability sampling design, but it is also 
usually the least efficient with respect to 
both cost and the precision of estimates, 
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partially because of spatial correlation among 
observations.

2.3 Systematic sampling
A systematic sample uses a fixed grid or array 
to assign plots in a regular pattern (Figure 1b). 
The advantage of systematic sampling is that it 
maximizes the average distance between plots 
and therefore minimizes spatial correlation 
among observations and increases statistical 
efficiency. In addition, a systematic sample, 
which is clearly seen to be representative 
in some sense, can be very convincing to 
decision-makers who lack experience with 
sampling. Systematic samples may be based 
on rectangular grids or hexagonal arrays. For 
example, a sample plot could be established 
at the intersections of a 2 km x 2 km grid. A 
random number is used to select the starting 
point and orientation for this grid, but no other 
random numbers are required. This sampling 
design is common in forestry. The greatest 

risk is that the orientation of the grid may, by 
chance, coincide with or be parallel to natural 
or man-made features, such as roads or gravel 
ridges resulting from melting glaciers. For very 
large geographic areas, orientation of gridlines 
along lines of longitude should be avoided. 
In higher latitudes the converging nature of 
these north-south gridlines may cause sample 
plot locations to be closer together in higher 
latitudes than in lower latitudes. Sampling 
designs based on hexagonal arrays alleviate 
this problem (White et al., 1992).

Systematic unaligned sampling designs 
combine features of both simple random 
and systematic sampling designs. With 
these designs, a sample plot is assigned to a 
randomly selected location within each grid 
or array cell (Figure 1c).

2.4 Cluster sampling
For practical reasons, such as increasing cost 
efficiency and reducing field crew travel, 

Figure 1.
(a) simple random sampling design; (b) aligned systematic sampling design; (c) unaligned systematic 
sampling design; (d) unaligned, clustered, systematic sampling design with the same number of plots but 
grouped into clusters
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sample plots may be organized into clusters, 
thus leading to systematic cluster sampling 
and stratified systematic cluster sampling. In 
systematic cluster sampling, the clusters are 
distributed throughout the population using 
grids or polygons such as hexagons. 

Several questions are relevant when planning 
a cluster-based sampling design: (i) what is 
the spacing between clusters? (ii) what is the 
shape of the cluster? (iii) what is the number 
of plots per cluster? and (iv) what is the sample 
plot configuration? To answer these questions, 
preliminary information about the spatial 
distribution and correlation of the variables of 
interest is needed. Correlation as a function 
of distance between field plots, estimated 
using variograms, can be used to compare the 
efficiencies of different sampling designs. 

2.5 Stratified sampling
Stratified sampling entails first dividing 
the population into non-overlapping 
subpopulations called strata that together 
comprise the entire population, and then 
drawing an independent sample from each 
stratum. If the sample in each stratum 
is a simple random sample, the whole 
procedure is described as stratified random 
sampling. Numerous reasons may be given as  
justification for stratified sampling (Cochran, 
1977; Schreuder et al., 1993). First, 
stratification is used to increase the precision 
of population estimates. To understand 
the potential gain in precision that may be 
achieved with stratification, some notation 
and formulae are necessary. With simple 
random sampling (SRS), the estimate of the 
population mean is

,		  [1]

and the estimate of the variance of the mean 
is

 ,		  [2]

where n is the sample size, yi is an 
observation, and 

, 		  [3]

is the sample estimate of the population 
variance. Cochran (1977) provides basic 
formulae for stratified estimation. Ignoring 
finite population correction factors and 
estimation errors in stratum weights, an 
unbiased estimator of the population mean 
and variance are,

,		  [4]

and

,		  [5]

where

,			  [6]

,		 [7]

are the within stratum means and variances, 
respectively; h=1, 2, …, L denote strata; j 
denotes observations within strata; nh denotes 
the number of sample observations within the 
hth stratum with n1+n2+…+nL=n; and Wh is the 
stratum weight representing the proportion of 
the population in the hth stratum. The effects 
of stratification and stratified estimation on 
precision are often assessed using relative 
efficiency, RE, defined as, 

,		  [8]

where RE>1 indicates a beneficial effect. 
Relative efficiency may be interpreted as the 
increase in the overall sample size necessary 
to achieve the same precision using estimation 
based on simple random sampling, as is 
achieved through using stratification and 
stratified estimation. From a quantitative 
perspective, precision gains are realized when 
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variances of estimated stratum means are 
substantially less than the variance of the 

overall estimated mean (i.e. 
n
s

n
s

h

h
22

<   ) 

and/or when strata with large 
h

h

n
s 2

 represent 

small proportions of the population (i.e. 
when Wh is small). From a qualitative 
perspective, precision gains are realized 
when heterogeneous populations are divided 
into more homogenous subpopulations. 
This typically means that the strata have 
substantially different means, variances or 
both.

A second reason for stratification is that it 
may contribute to avoiding bias, depending 
on the estimator selected. For example, NFA 
field crews generally are granted access to plot 
locations on publicly owned lands. However, 
if the permission of private landowners is 
required to measure sample plots on their 
lands, inevitably some will deny access. In 
extreme cases, the ratio of privately owned to 
publicly owned plots in the accessible portion 
of the sample may be considerably less than 
the ratio of privately owned to publicly owned 
forest lands in the population. If the species 
compositions and/or management practices 
are substantially different on privately owned 
and publicly owned forest lands, bias may 
occur. One solution is to stratify lands by 
ownership, thus leading to independent 
sample estimates for the two ownership strata 
(McRoberts, 2003). 

A third reason for stratification is to 
accommodate different sampling protocols or 
different estimation procedures for different 
subpopulations. For example, a substantial 
portion of sampling costs may be attributed to 
travel to and from plot locations. If data from 
remote sensors may be used to determine that 
some plots are located on non-forest land, then 
travel costs may be substantially reduced by 
not sending field crews to these plot locations. 
As a result of the different measurement 
technique, however, a different estimator may 
be required for these strata.

The greatest benefits of stratified estimation 
are realized when the population is stratified 
and stratum sample sizes are determined 
before sampling is conducted. The process 
of determining stratum sample sizes or, 
equivalently, allocating samples to strata, may 
be accomplished in several different ways and 
for several different purposes. Frequently, 
samples are allocated to strata in proportion 
to some attribute of the strata. An easily 
implemented approach is to allocate sample 
plots to strata in proportion to strata sizes. 
If simple random or systematic sampling is 
used within strata, then this approach leads to 
equal probability samples within strata, which 
may simplify estimation. However, with this 
approach, the variances of stratum means may 
differ greatly. If comparably precise estimates 
of stratum means are desired, then samples 
may be allocated to strata in proportion to 
stratum variances. A potential disadvantage of 
this approach is that good estimates of stratum 
variances are necessary before samples are 
allocated to strata. Finally, it may be that 
estimates of means for some strata are more 
important than others. In this case, samples 
may be allocated to strata in proportion to a 
subjective assessment of strata importance.

Often the sampling objectives prohibit 
stratified random sampling. For example, a 
systematic sampling design may be used as a 
means of optimizing the precision of estimates 
for multiple variables simultaneously. Even 
though the greatest benefits of stratification 
may not be realized for any particular variable, 
the beneficial effects of increasing precision and 
precluding estimation bias may still warrant 
post-sampling stratification and stratified 
estimation. Thus, even if stratified sampling 
is not used, consideration of post‑sampling 
stratified estimation is recommended because 
large increases in precision may often be 
realized with little additional cost or effort.

Almost any source of data can be used 
to create strata as long as two tasks can be 
accomplished in a consistent manner. First, 
stratum weights, calculated as the proportion 
of the population represented by each stratum, 



31

Since forest inventory estimates are 
frequently either means or totals for either 
area or volume, the relevant derived variables 
in forest inventory are often of the form

,			   [9]

where X and Y are expectations of random 
variables, x and y. As an example, consider 
estimation of mean forest area per land-use 
stratum for sample plots that may intersect 
multiple strata, all within the category of 
forest land. One method for accommodating 
this phenomenon that is particularly useful 
with point sampling is to use the information 
from the centre point only. Let xi=1 when the 
centre point of the plot belongs to the stratum 
in question and xi=0 otherwise, and let yi =1 
when the centre point is on forest land and 
yi =0 otherwise. Then the ratio estimator for 
mean area is

,			   [10]

where n is the number of sampling units. Let 
E(.) denote statistical expectation; then,

 ,		  [11]

means that m is approximately unbiased 
when n is large. 

The estimation of standard errors is 
complicated by spatial correlation that may 
arise from trend-like changes in variables and 
either systematic or cluster sampling. Matérn 
(1947; 1960) suggested the error variance, 
E(m-M)2, as a measure of the reliability of 
the estimator and also proposed a variance 
estimator. Let i denote field plots; let r denote 
clusters of field plots; and consider the cluster  
 
residuals zr=myr, where  
 
and	 .     

must be determined. Second, each plot must 
be assigned to one and only one stratum. The 
increasing availability of diverse thematic 
digital data layers opens vast possibilities 
for sources of data that can be used to create 
strata. In addition, the increasing availability 
of geographic information systems (GIS) 
greatly simplifies accomplishment of the two 
tasks. One popular choice of stratification 
data is land cover classifications from which 
aggregated forest and non-forest classes may 
be constructed and used as strata (McRoberts 
et al., 2002). Using a GIS with such a layer 
greatly simplifies the two stratification tasks. 
Within the GIS, each mapping unit of the land 
cover classification is assigned to a stratum 
based on the class assigned to the mapping 
unit. Calculation of stratum weights is then 
simply a matter of using GIS functionality to 
determine the total area of all mapping units 
assigned to the same stratum and dividing by 
the total area of the sampled population. A 
plot is assigned to the stratum of the mapping 
unit containing its centres. Other choices of 
digital data layers that can be used to create 
strata include, but are not limited to, soil maps, 
climate division maps, ecological provinces, 
administrative boundaries, ownership maps 
and land management units.

2.6 Ratio estimators and 
Matérn’s error estimators
Although a discussion of statistical estimators 
is provided elsewhere in this chapter, or may 
be obtained from Schreuder et al. (2004), the 
importance of selecting estimators consistent 
with the sampling design in order to obtain 
valid variance estimates should be noted. 
With systematic and cluster-based sampling 
designs it is particularly important that 
estimators properly account for possible 
spatial correlation among observations. 
Because of their utility with sampling designs 
that must accommodate spatial correlation, 
this section provides a brief discussion of 
Matérn estimators (Matérn, 1960).
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Assume that the residuals form a realization 
of a second order stationary (weakly 
stationary) stochastic process. The variance of 
the process can be estimated by means of 
quadratic forms

s
r s

rrs zzcT = , 

where  crs = csr ,  =
r s

rsc 0  and 

1=
r

rrc  , 
 

where r and s both refer to clusters of field 
plots. Estimators of this form are unbiased 
if the process z is spatially uncorrelated 
and conservative if the process is positively 
correlated (Matérn, 1960). This approach 
has been used in the Swedish and Finnish 
inventories (cf. Ranneby, 1981; see also 
Tomppo et al., 1997, and Heikkinen, 2006) 
and is applied by sampling strata as follows. 
Within each stratum, the group g of four field 
plot clusters (r1, r2, r3, r4) is composed in such a 
way that each cluster belongs to four different 
groups (Figure 2). 

Figure 2.  
Groups of clusters and clusters of sample plots.

The deviance of the cluster mean, ȳr , from 
the stratum mean ȳ is computed for each 
cluster r. Denote zr=(ȳr-ȳ)nr , where n is the 
number of relevant sample points in cluster r 

(for this example, nr=4). The weights  cr1 = cr4 
=  cr2= cr3 = ½ are often used. The quadratic 
forms can then be expressed as Tg = (zr1 - zr2 
- zr3 - zr4)

2/4, and the resulting standard error 
estimators for each stratum are

,		  [12]

where g denotes a group of clusters in the 
stratum, i denotes plots in the stratum, and k 
is the number of clusters in each cluster group 
(for this example, k =1).  The standard error 
estimators for the entire study area can be 
obtained by combining the stratum-specific 
estimators with the usual formula for stratified 
sampling (eqs. [4] and [5]). This procedure is 
relevant for strata having large numbers of 
field plots, preferably at least several hundred. 

3. Sample size
Determination of sample size is one of the 
most important steps in constructing a 
sampling design. If the sample is too small, 
then uncertainty will be great; if the sample is 
too large, then the cost will be unnecessarily 
high. It is possible to quantify the expected 
confidence in future estimates made from a 
valid probability sample. As the number of 
sample plots increases, the variance of the 
estimation error decreases, the precision of 
the estimate increases, and more confidence 
can be placed in the estimate. Usually, the 
exact value of the estimate is known but 
not the true condition of the forest. With 
probability samples, the probability that an 
estimate is within a specified distance from the 
true value may be determined. These are the 
roles of the “confidence interval”, an estimated 
range of proportions likely to include the 
true, but unknown, proportion of forest, and 
the “confidence coefficient”, the probability 
that similar confidence intervals constructed 
using different samples will contain the true 
proportion of forest. 

The simplest case is that of estimating 
proportions with a simple random sample, 
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such as estimating the proportion of a nation 
that is forested. For example, an NFA covers 
a sampled population of 5 million ha, and in 
a simple random sample with n=1 000 plots, 
400 are forested. The estimated proportion of 
forest is 40 percent. What level of confidence 
can be placed in this estimate? If a confidence 
coefficient of 80 percent is acceptable, for 80 
sample plots the true but unknown percentage 
of forest is within the confidence interval. 
From available tables and figures (Czaplewski, 
2003), with n=1 000, and an estimate of 40 
percent forest, the confidence interval is 38.0 
to 42.0 percent. As another example, suppose 
that a rare forest type exists in the population, 
but the exact amount is not known. However, 
none of this rare forest was observed in the 
simple random sample of n=1 000 plots, and 
the estimated percentage of the nation in this 
rare forest condition is 0. For the same 80 
percent confidence coefficient, the confidence 
interval for this estimate is 0.0 to 0.2 percent. 
Thus, the estimate of the area of this rare 
forest type in the entire 5-million ha nation is 
0 ha to 10 000 ha. The final example is a 100 
000 ha municipality for which measurement 
of a sample of n=20 of the 1 000 plots reveals 
that 18 are forested. The estimate for this 
municipality is 90 percent forest cover with 
a confidence interval of 75.5 percent to 
97.3 percent, or 75 500 to 97 300 ha. Other 
calculations of sample sizes are possible with 
interactive “sample size calculators”, available 
online. These examples demonstrate that 
accurate national estimates for common types 
of forest cover are possible with relatively few 
sample plots. However, larger sample sizes are 
often needed if the NFA requires estimates 
of rare forest types or small portions of the 
nation. It is the sample size that determines 
the precision of estimates in an NFA, not the 
size of the entire sampled population.

Determining the required sample size 
requires an estimate of the standard deviation 
of the differences between individual plot-
level values and their average value. This 
standard deviation may be estimated with 
a pilot study or inventory that measures a 

small sample of forest plots to determine the 
variability among them. For example, assume 
the pilot inventory includes 60 plots, and wood 
volume is measured on each plot. Further, 
suppose that the mean volume is =100 m3/ha, 
the variance among plots is =2 500 m3/ha2, 
and the standard deviation is  =50 m3/ha. If 
observations from the pilot plots are normally 
distributed, about 1/6th of the plots will have 
(100 - 50)=50 m3/ha or less, and another 1/6th 
of the 60 plots will have 100 + 50=150 m3/ha 
or more. Assume the precision requirement 
for the NFA is to estimate mean wood volume 
per hectare to within a ±5 percent “tolerance” 
or “maximum allowable difference” 
(Dmax=0.05) with a 66 percent confidence 
coefficient. The required sample size n is 
approximately 100 sample plots.

,[15]

If this NFA precision requirement is for 
the entire nation, then 100 sample plots are 
sufficient. If this NFA accuracy precision is for 
each of 10 subnational units, then a total of 
1 000 sample plots is necessary. Sample sizes 
increase greatly as the acceptable tolerance 
becomes smaller. A tolerance of ±1 percent 
would require the sample size to increase from 
n=100 to n=2 500 sample plots (eq. 15) in this 
example. The required sample size increases 
for larger confidence coefficients. For 
example, it requires four times more sample 
plots to improve precision from a 66 percent 
confidence coefficient to the 95 percent 
level. More exact and detailed calculations 
of required sample sizes are possible with 
the aforementioned interactive sample size 
calculators.

4. Comparing 
sampling designs
An effective way to compare sampling designs 
is via simulation if a forest area model is 
available. The model may be obtained from 
a previous inventory or from satellite image-
based estimation of variables of interest. 
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An example of the standard errors obtained 
from sampling designs for estimating mean 
growing stock volume is shown in Figure 3. 
The test site is in north Finland and has a land 
area of 6.47 million ha, a forest land area of 
4.19 million ha, and a mean volume on forest 
land of 52.7 m3/ha. 

A pixel level, border-to-border forest map 
has been produced using field data from the 
preceding inventory, satellite images and 
digital map data (Tomppo, 2004; Tomppo 
and Halme, 2004). Satellite images of different 
resolution provide one information source, in 
addition to existing maps. A pilot inventory 
may also be used to collect information 
for planning the final sampling design. 
Representative subareas can be selected from 
the population where pilot inventories may be 
conducted. However, these pilot inventories 
must be acknowledged and accepted as less 
than optimal. In addition, new sampling 
designs can be created using information from 
previous inventories, as has been the case in 
countries where forest inventories have been 
conducted since the 1920s and 1930s (e.g. 
Ilvessalo, 1927).

Figure  3.  Standard errors based on sampling 
simulations with different distances between field plots 
and with numbers of plots per cluster ranging from 9 
to 17. 
Note: The distance between clusters is 10 km.
Source: Tomppo et al., 2001; constructed by Helena 
Henttonen.

5. Sampling 
considerations 
for tropical forest 
inventories
In recent years, concern for the effects of 
climate change and actions to mitigate those 
effects have motivated intense interest in 
forest inventories in tropical countries for 
purposes of estimating carbon and carbon 
change. Such inventories, often characterized 
as Measurement, Reporting and Verification 
(MRV) systems when targeted to REDD 
purposes, are similar to national forest 
inventories (NFIs), although the MRV 
emphasis may be restricted to biomass-related 
variables, and the MRV population of interest 
may be restricted to lands that are subject to 
human-induced greenhouse gas emissions. 
However, because of the similarities between 
MRVs and NFIs, tropical developing countries 
often design their NFIs so that they can also 
serve as MRVs, or design their MRVs in such 
a manner that they can easily be extended to a 
complete NFI. Thus, the guidance articulated 
below pertains equally to MRVs as to NFIs.

By definition, a monitoring programme 
includes emphasis on change and trends. 
In addition, in recent years NFIs have come 
to place increased emphasis on change 
and trends. Therefore, selection of plot 
configurations, sampling designs and perhaps 
stratification schemes are driven at least 
partially by the desire to estimate change.

5.1 Plot configuration
Selection of a plot configuration is based on 
multiple general principles, many of which 
are the same for boreal, temporal and tropical 
inventories, although some are different. 
Precise estimation of change is known to 
be more difficult than precise estimation of 
current conditions, particularly when the 
change is only for a small area. However, 
remeasuring the same plots on successive 
occasions can increase the precision of 
change estimates. In addition, the land area 
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of interest could be stratified for variance 
reduction purposes using a variable relating 
to the likelihood of change. Thus, the 
emphasis on estimation of change in tropical 
inventories argues in favour of a relatively 
large proportion of permanent plots which, 
in turn, argues in favour of marking or 
determining the locations of trees, so that they 
can be relocated for successive inventories. 
Although establishment and measurement 
of a temporary plot is less expensive 
than establishment and measurement 
of a permanent plot, establishment and 
measurement of different temporary plots on 
two occasions is not necessarily less expensive 
than establishment, measurement and re-
measurement of a single permanent plot.

Although no strong consensus exists 
regarding plot shape, circular plots are often 
preferred because they require only single 
control points, the plot centres. Rectangular 
plots require four control points, one at each 
corner. In addition, for a given plot area, a 
circular plot has a smaller perimeter meaning 
that fewer decisions will be necessary as to 
whether particular trees are or are not on 
the plot. Also, determining coordinates for 
individual trees, which may be necessary 
for assessing their change, may be easier for 
circular plots which have only a single control 
point, than for rectangular plots which have 
four control points. However, if tree densities 
are exceptionally large, then long, narrow, 
rectangular plots may be a more feasible 
alternative.

For purposes of logistical efficiency, 
monitoring and inventory programmes 
typically configure plots in clusters. Because 
of expected access problems, configuring 
plots in clusters may be even more crucial for 
tropical programmes. Thus, individual plot 
size and the number of plots within clusters are 
subject to multiple important considerations, 
all of which are generally related to logistical, 
cost and precision considerations (Scott, 
1993; Tomppo et al., 2010a; 2011). First, plots 
should be small enough and few enough 
within clusters to allow a field crew to 

measure the entire cluster in a single day. The 
greatest proportion of the cost of measuring 
a plot in boreal and temporal forests is travel 
to and from the plot location; this proportion 
is likely to be even greater for tropical forests 
for which many regions are remote and 
nearly inaccessible. Thus, greater efficiency 
is achieved if field crews are not required to 
return to the same plot location on multiple 
days. Second, plot features such as radiuses for 
circular plots or lengths for rectangular plots 
must be measured on a horizontal plane, not 
along irregular terrain. Because measurement 
on a horizontal plane is more difficult for larger 
plots, particularly in hilly and mountainous 
terrain, smaller plots are again preferable. 
Third, establishment of permanent rather 
than temporary plots to facilitate estimation 
of change usually requires either marking 
or determining coordinates for individual 
trees. The latter approach is more difficult for 
large plots in dense tropical forests because 
more trees will be located between the tree of 
interest and control points. An argument in 
favour of larger plots for tropical inventories 
is that tropical forests are typically more 
diverse than boreal and temperate forests, 
implying that the total area inventoried at 
each sampling location should be greater to 
capture the greater diversity. However, this 
greater size could be achieved by increasing 
the number of small plots in the same plot 
cluster. This approach is cost efficient when 
the spatial correlations among observations of 
the variables of interest are large but decrease 
with increasing distance.

Greater sampling efficiency is also achieved 
by using small subplots for measurement of 
smaller diameter trees. For circular plots, the 
subplots are usually nested (i.e. they take the 
form of concentric circles all with the same 
centre). The particular sizes of the subplots 
and the diameter thresholds corresponding to 
the subplots should be based on the expected 
number of trees to be found on the subplots, 
the expected similarities of trees, and the 
travel time between subplots of the same plot 
or plots in the same cluster.
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Finally, the remote and mostly inaccessible 
nature of many tropical forests means that 
inventories may have to rely on a combination 
of plot and remotely sensed data. Thus, remote 
sensing considerations may be necessary 
when selecting a plot configuration. As an 
example, a plot should be large enough to 
constitute an adequate sample of the trees 
on the ground element corresponding to 
the remotely sensed element (e.g. satellite 
image pixel, Lidar footprint) that contains the 
ground element centre. In addition, a desire 
to align different plots in the same cluster 
with different remotely sensed elements may 
require distances between plots to be at least 
as great as the dimensions of the remotely 
sensed elements. 

5.2 Sampling design
Selection of a sampling design for a tropical 
forest inventory entails consideration of 
multiple principles. First, spatial balance 
is generally a preferred feature of sampling 
designs, which means that large geographic 
regions of the population do not remain 
unsampled. Spatial balance is often achieved 
by incorporating a systematic component into 
the sampling design. This may take the form 
of a network of perpendicular grid lines or 
a tessellation of the population into regular 
polygons. Spatially aligned designs establish 
plots at grid intersections or centres of 
polygons, whereas spatially unaligned designs 
establish plots at random locations within 
the rectangles formed by the grid lines or the 
regular polygons. 

Remote sensing considerations may also 
be appropriate when selecting a sampling 
design. For example, tropical forests are often 
characterized as having relatively few days 
without cloud cover. Thus, cloud-free imagery 
for satellite-based sensors, such as Landsat or 
SPOT, may be difficult to obtain. Lidar data, 
which are currently acquired from airborne 
platforms and use laser techniques, are often 
proposed as an alternative. In addition, laser 
pulses penetrate forest canopies and produce 
useful information for estimating volume, 

biomass and the carbon content of trees. 
If plots are located at the intersections of 
perpendicular grids, acquisition of Lidar data 
from airborne platforms in strips is facilitated 
because straight flight lines can be used. 

Finally, when constructing grid networks 
and tessellations, consideration should be 
given to use of equal area projections. If not, 
then plots located at greater distances from 
the equator will represent less population 
area than plots located closer to the equator. 
Although weighting schemes can be used 
with unequal area projections, they are often 
complex and bothersome.

As previously noted, the greatest proportion 
of the cost of measuring a plot is travel to and 
from the plot location. This proportion may 
be very large in tropical forests with remote 
and inaccessible regions (Tomppo et al., 
2011). Thus, cost efficiency dictates that plots 
be established in clusters rather than singly. 
Multiple approaches to cluster sampling are 
popular. One approach is to configure a plot 
as multiple subplots in a regular pattern and 
in close proximity to each other (McRoberts 
et al., 2005). With this approach, the data for 
all subplots may be aggregated and attributed 
to the plot centre. A second approach is 
to establish plots in clusters configured 
as rectangles, half-rectangles or other 
geographic shapes (Tomppo, 2006). A third 
approach is two-stage cluster sampling. With 
this approach, primary sampling units such 
as polygons in the form of large rectangles 
are first randomly selected, and then multiple 
secondary sampling units in the form of plots 
are established within the selected polygons 
at randomly selected locations. When using 
cluster sampling, consideration should 
be given to the spatial correlation among 
observations for plots within the same cluster. 
If distances between pairs of plots are less than 
the range of spatial correlation, observations 
will tend to be similar and the sampling will 
tend to be less efficient.
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5.3 Stratification
Stratified approaches to sampling are used 
for multiple reasons, but primarily to vary 
sampling intensities to accommodate 
selected criteria. For example, for an MRV 
that emphasizes geographic regions subject 
to human-induced carbon emissions, lesser 
sampling intensities may be acceptable for 
remote, inaccessible regions less likely to be 
developed or harvested. In addition, the cost 
associated with greater sampling intensities 
in remote regions may be prohibitive. 
Nevertheless, sampling, albeit with lesser 
intensities, must be conducted in these regions 
to achieve spatial balance. 

Multiple principles also guide stratified 
approaches to sampling. First, strata with 
stable boundaries are generally preferable. 
Otherwise, changes to boundaries of strata 
with different sampling intensities lead to 
different sampling inclusion probabilities and 
complicate estimation. In addition, stratified 
estimation requires that a plot be assigned 
to one and only one stratum. If the stratum 
to which a plot is assigned changes between 
measurements, then difficulties arise as to the 
stratum to which a plot change observation 
should be assigned. Thus, strata defined by 
topography, climatic zones, biomes or political 
boundaries may be preferable to strata defined 
by forest attributes such as density or perhaps 
forest type.

Stratified sampling is most often  
implemented using one of three plot 
allocation schemes. With equal allocation, 
the same number of plots is allocated to all 
strata, regardless of strata sizes. This scheme 
is preferred if the objective is estimates for 
individual strata. With optimal allocation, 
sampling intensities selected for strata are 
based on optimization criteria, such as 
measurement costs, and/or within-stratum 
variation of observations of variables of 
interest, such as volume or biomass or their 
likely changes. Greater sampling intensities are 
selected for strata with greater variation and/or 
lesser measurement costs. With proportional 

allocation, sampling intensities selected 
for strata are proportional to strata sizes. 
Cochran (1977) provides a comprehensive 
discussion regarding alternative strategies. 
For tropical countries with large, remote and 
nearly inaccessible regions, some form of 
optimal allocation will usually be necessary 
to mitigate the excessive costs associated with 
sampling these regions. Proportional and 
optimal allocation can be easily implemented 
using sampling designs based on networks of 
perpendicular grid lines. With proportional 
allocation, plots or plot clusters are established 
at grid intersections without regard to the 
stratum associated with the grid intersection. 
With optimal allocation, sampling intensities 
can be increased or decreased for different 
strata by selection of grid intersections at 
which plots are established. For example, if 
the sampling intensity is to be reduced by a 
factor of four, plots can be established at the 
intersections of every second grid line only in 
each direction.

5.4 Case study – Tanzania
For a sampling design for Tanzania, Tomppo 
et al. (2010a) used double sampling for 
stratification and optimal allocation of plots 
to strata. The first-phase sample consisted of 
an office assessment of a dense grid of field 
plots for assignment to volume and cost 
classes. Based on these assessments, strata 
were constructed using predicted cluster-level 
average volume of growing stock and 
estimated cost to measure a plot cluster. 
Volume classes were based on volume 
predictions using satellite imagery, 
observations for ground plots outside 
Tanzania, and robust models whose 
predictions were calibrated using areal volume 
estimates for Tanzania. Neyman allocation 
(Cochran, 1977) was used to select boundaries 
for the volume classes, so as to maximize the 
precision of the overall volume estimate 
assuming a fixed sample size. Cost classes 
were based on GIS analyses and local expert 
opinion of the number of days (one, two, more 
than two) necessary to measure a plot cluster. 
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Selection of the class intervals, which affects 
the gain that can be achieved with  
stratification, requires greater investigation. 
The second-phase sample consists of field 
measurement of plots where within-strata 
sampling intensities were selected using 
optimal allocation (Cochran, 1977). With 
optimal allocation, sampling intensities are 

proportional to the quantity hh c  
where h is the  
 
within-stratum standard deviation for 
observations of the variable of interest (mean 
growing stock volume) and ch is the average 
cost in terms of measurement time for a plot 
cluster in stratum h. More details concerning 
the sampling design can be found in Tomppo 
et al. (2010a).

In the tropics, use of available vegetation maps 
to delineate land into forest and non-forest is 
sometimes appealing. However, if plot clusters 
are not established on delineated non‑forest 
land in the same manner as on delineated 
forest land, map errors could contribute to 
bias, as forest land erroneously delineated as 
non-forest land will not be sampled. However, 
allocating lesser sampling intensities to these 
lands can decrease the costs associated with 
sampling-delineated non-forest land. In 
addition, field measurement of plot clusters 
entirely outside forest and without growing 
stock can often be avoided by assessing such 
clusters with land‑use information obtained 
from other reliable sources, such as those 
proposed for Brazil (Tomppo, 2009). 

The lack of transportation routes, other than 
rivers, presents a special challenge for tropical 
forest inventories, such as in the Amazonian 
Biome. For example, roads may be available 
only a part of the year (approximately six 
months in the case of the Amazonian Biome). 
In addition, some forests may be designated 
for nature conservation purposes or for the 
sole use of indigenous peoples. Stratification 
based on relevant variables such as the 
likelihood of changes and measurement costs 
promote both cost efficiency and adherence to 
sound statistical inventory principles. 

6. Summary
Construction of an appropriate sampling 
design for an NFA, NFI or MRV is a crucial 
step if estimates are to be sufficiently precise 
and scientifically defensible. One of the first 
steps in this process is to define the target 
population and select a sampling frame. The 
recommended option is an infinite population 
sampling frame in which observations 
and measurements of a field plot support 
area are attributed to the point at the field 
plot centre. Because inventories are often 
expected to produce estimates of change, it is  
recommended that the sampling design 
include at least some permanent plots. 
The next step is to distribute the field plots 
throughout the population to be sampled. This 
chapter has presented information on and 
discussed several popular sampling designs: 
simple random sampling, stratified sampling, 
systematic sampling and cluster sampling. 
If the sampling design includes a systematic 
component, caution is recommended when 
using rectangular grids for target populations 
with large north-south components. Although 
the selection of the particular sampling design 
depends on a variety of considerations, if 
stratified sampling is not used, consideration 
should be given to post-sampling stratification 
and stratified estimation. Finally, additional 
information on these and more complex 
sampling design issues is available in the 
reference material.

Self-study exercises
1.	Describe the differences, advantages 

and disadvantages of simple random, 
systematic, stratified and cluster 
sampling designs.

2.	Explain why a stratified sampling design 
may be superior to a simple random or 
systematic sampling design. Describe 
ancillary data that may be useful for 
constructing strata.

3.	What role does spatial correlation 
among observations or measurements 
of forest attributes play in the selection 
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of a sampling design and estimation of 
population variances?

4.	Describe the criteria and information 
necessary to determine an appropriate 
sample size.

5.	Identify sampling issues and constraints 
unique to inventories in tropical forests. 
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